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a b s t r a c t 

The COVID-19 pandemic is currently causing several damages to the world, especially 

in the public health sector. Due to identifiability problems in parameters’ estimation of 

complex compartmental models, this study considered a simple deterministic susceptible–

infectious–recovered (SIR)-type model to characterize the first wave and predict the future 

course of the pandemic in the West African countries. We estimated some specific char- 

acteristics of the disease’s dynamics, such as its initial conditions, reproduction numbers, 

true peak and peak of the reported cases, with their corresponding times, final epidemic 

size and time-varying attack ratio. Our findings revealed a relatively low proportion of sus- 

ceptible individuals in the region and the different countries ( 1 . 2% across West Africa). The 

detection rate of the disease was also relatively low ( 0 . 9% for West Africa as a whole) and 

< 2% for most countries, except for Gambia (12.5 %), Cape-Verde ( 9 . 5% ), Mauritania ( 5 . 9% ) 

and Ghana ( 4 . 4% ). The reproduction number varied between 1.15 (Burkina-Faso) and 4.45 

(Niger), and most countries’ peak time of the first wave of the pandemic was between 

June and July. Generally, the peak time of the reported cases came a week (7-8 days) af- 

ter the true peak time. The model predicted for the first wave, 222,100 actual active cases 

in the region at the peak time, while the final epidemic size accounted for 0 . 6% of the 

West African population (2,526,700 individuals). The results showed that COVID-19 has 

not severely affected West Africa as in other regions. However, current control measures 

and standard operating procedures should be maintained over time to accelerate a decline 

in the observed trends of the pandemic. 

© 2022 The Author(s). Published by Elsevier B.V. on behalf of African Institute of 

Mathematical Sciences / Next Einstein Initiative. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

Introduction 

COVID-19 is a severe acute respiratory syndrome caused by the new coronavirus, SARS-CoV-2, which emerged from 

Wuhan, Hubei Province (China) towards the end of 2019 [1,2] . It is currently the most important threat to global public

health. By August 15th, 2020, about 21,026,758 total confirmed cases and 755,786 deaths were recorded worldwide [3] . The

disease has rapidly spread around the world (about 212 countries) [4] , including the 54 African countries. By mid-August 

2020, The World Health Organisation (WHO) reported 936,062 and 152,483 confirmed cases and 18,286 and 2,351 deaths 
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across Africa and the West-African region, respectively [3] . Healthcare services in the region have particularly faced critical 

times, making sensitive decisions regarding patients and their treatment [5] . It is clear that the COVID-19 pandemic has

severely affected people’s life, health and economy. Actually, it led to a significant increase in the demand for hospital beds

and artificial respirators (mechanic and non-invasive). According to the WHO global health observatory data, most countries 

in West Africa have less than five hospital beds and two medical doctors per 10,0 0 0 of the population, while 50% of the

countries have health expenditures lower than US$50 per capita [6] . In contrast, European countries such as Italy and Spain

have 34 and 35 hospital beds with 41 medical doctors per 10,0 0 0 of the population, and US$2,840 and US$2,506 per capita

expenditure, respectively [7] . Moreover, medical staff worldwide have been directly exposed to infections [8] . Since vaccines 

are still under development, and antiviral drugs are not available for effective curative treatment of COVID-19 infections, the 

actual cure practice is hospitalization and intensive care unit management [9] . Prevention measures used are essentially non- 

pharmaceutical interventions such as regular hand washing with soap, mask-wearing and social distancing. To be efficient, 

these non-pharmaceutical measures require a good understanding of the dynamic of the spread of the disease to aid in the

decision-making of their use. 

Mathematical and statistical models can be useful tools for decision-making in public health. They are also important in 

ensuring the optimal use of resources to reduce the morbidity and mortality associated with epidemics through estimation 

and prediction [10] . The prediction of essential epidemiological parameters, such as the peak time, the duration and the 

final size of the outbreak, is crucial for policymakers and the public health authorities to make appropriate decisions for 

the control of the pandemic [9] . Therefore, modelling and forecasting the numbers of confirmed and recovered COVID-19 

cases could play an important role in designing better strategies to control the spread of COVID-19 in the world [4] . Since

the appearance of the first COVID-19 case in the world, several studies have been conducted to model the dynamics of the

disease. The main methods used were: deterministic modelling techniques [11–13] , autoregressive time series models based 

on two-piece scale mixture normal distributions [4] , stochastic modelling methods [14,15] , machine learning techniques 

[16,17] , growth models [18,19] and bayesian method [17] . 

Among these modeling techniques, deterministic models are the most considered because of their simplicity. However, 

they fail to provide accurate results due to the non-identifiability problems when the number of compartments and the 

number of parameters are high [2] . Actually, complex deterministic models have proven to be less reliable than simpler

models such as the SIR model framework [2] , which performs better in describing trends in epidemiological data. This

under-performance may be worse when meta-population confirmed-cases data are considered. However, only a few studies 

related to COVID-19 in Africa used mathematical models and prevalence data to study the dynamics, and analyze the causes 

and key factors of the outbreak [1,11,20] . A recent study [11] assessed the current pattern of COVID-19 spread in West Africa

using a deterministic compartmental SEIR-type model. 

In this study, we used a simple deterministic susceptible–infectious–recovered (SIR)-type model to characterize the first 

wave of the pandemic and predict its future trends in West Africa. Specifically, we aimed to estimate some specific char-

acteristics of COVID-19 dynamics (initial conditions of the pandemic, reproduction numbers, true peak, reported peak and 

their times and dates, final epidemic size and time-varying attack ratio). The originality of this work is that it focused on the

16 West African countries and the whole region as well. It is the first study dealing with the dynamics of the pandemic in

each of the West African countries. Moreover, this study used a novel approach to estimate the parameters of compartmen- 

tal models, based on a cross-validation procedure for estimations. This approach alleviates the problem of non-identifiability 

of parameters and ensures accurate estimates [21] . 

Methods 

Model description 

Problems of identifiability in parameters’ estimation in deterministic compartment models (especially complex models) 

are common in epidemiological modelling studies, which often imply biased estimations of parameters. In these situations, 

simpler models, which over-perform complex models in estimating reliable parameters, are recommended [2] . Hence, in this 

study, the SIR model [22] was considered with two removal rates as illustrated in the system below [23] : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS 

dt 
= −βSI 

N 

, 

dI 

dt 
= 

βSI 

N 

− (ν1 + ν2 ) I, 

dR 

dt 
= (ν1 + ν2 ) I. 

(1) 

with N = S + I + R, S(0) = S 0 > 0 , I(0) = I 0 > 0 , R (0) = R 0 ≥ 0 and N(0) = N = S 0 + I 0 + R 0 . 

In Eq. (1) , S = S(t) , I = I(t) and R = R (t) , representing the number of susceptible, infected and removed individuals at

time t, respectively; while N is defined as the total population size for the disease transmission. The parameters β, ν1 and

ν2 are the transmission rate, the removal rate of reported infected individuals (detected) and the removal rate of infected 

individuals due to all other unreported causes (mortality, recovery or other reasons), respectively. We considered the removal 

rate ν as constant with value ν = 1 / 10 [24] . From the second differential equation of Eq. (1) , it could be noticed that ν I 
2 2 1 0 
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represents the daily confirmed cases ( Ir 0 ) at time 0 of the outbreak. Thus, the relationship between the initial number of

infected individuals and the detection rate, ν1 , is I 0 = Ir 0 / ν1 , was used in the estimation process. 

Data consideration and parameter estimation procedure 

For each country, the data considered for the modelling spans the period from the date of detection of the first case

of COVID-19 in the country and August 12, 2020. Data considered were the daily numbers of reported cases that were

assimilated to ν1 I. These data were downloaded from the Global Rise of Education website [25] . Table A1 presents the

demographic patterns [26] , initial dates of the pandemic [25] and testing effort s (identification of new cases) of the countries

[26] . We fitted the model Eq. (1) to the observed daily cases to study the dynamics of the COVID-19 pandemic in the 16

West African countries. 

To improve the prediction power of Eq. (1) , we used a cross-validation procedure of parameter estimation, where 90%

of the observations were considered to estimate values of the five unknown model parameters ( S 0 , I 0 , R 0 , β, ν1 ) and the

remaining observations were used to validate the model. The Root Mean Square Error (RMSE) statistic was used as the 

measure of estimation precision: 

RMSE = 

√ ∑ k 
r=1 ( ̂

 θ − θ ) 2 

k 
, (2) 

where ˆ θ and θ are the predicted and observed number of daily cases, respectively; k is the number of observations consid-

ered. RMSE is used to compare the prediction errors of different models. Its values range from 0 and ∞ , with the lowest

values indicating better estimation precision [27] . We considered as RMSE 1 , the Root Mean Square Error computed on the

90% of the observations and RMSE 2 , computed on the remaining observations ( 10% ). 

The solutions of Eq. (1) were obtained using the built-in function ODE45 of Matlab [28] . Then, the non linear least

square technique was performed to estimate the five parameters in Eq. (1) given starting values, using the built-in function 

fminsearchbnd of Matlab [28] . 

Afterwards, we simulated 2,0 0 0 different starting values of the five parameters using a resampling method (function 

resample of Matlab) for S 0 , I 0 and R 0 and the uniform distribution (function rand of Matlab) for β and ν1 . Then, we estimated

for each of the starting points, values of the five parameters using the non-linear least square technique described above. 

The final values considered for these parameters were those related to both the smallest values of RMSE 2 and RMSE 1 to

guarantee a good fit of the model and a good predictive power. At the end of this process, we obtained reliable estimates of

the model parameters with 95 % confidence intervals. Curves were plotted to show evolution trends of predicted daily new 

COVID-19, daily reported cases and the attack ratio for the 16 countries. With the estimated values of the five parameters

from Eq. (1) , the COVID-19 dynamic in each country was characterized by computing the following parameters with their 

95% confidence intervals. 

- Reproduction number , R 0 [29] : it is the average number of secondary infections, caused by an average infected individual

(during his infectious period), in a fully constituted population: 

R 0 = 

β

ν1 + ν2 

. (3) 

- Running reproductive number , R e [29] : it measures the number of secondary infections caused by a single infected individ-

ual in the population at time t: 

R e = 

S(t) 

N 

β

ν1 + ν2 

. (4) 

- True peak size , n pp , and True peak time , T pp . The true peak size indicates the largest daily number of new infectious cases

in the population: 

n pp = max 

(
β

SI 

N 

)
, (5) 

while the true peak time, T pp , represents the time at which the largest daily new infected cases is obtained. These two

parameters were determined numerically. - Peak size of reported cases , n rp , and Peak time of reported cases , T rp . The peak size

of reported cases indicates the largest number of daily confirmed cases: 

n rp = max (ν1 I) , (6) 

while the peak time of reported cases is the associated time to n rp . These were determined numerically. - Maximum number

of active cases , I max : since I 0 , R 0 << S 0 , we assumed the number of initial susceptible individuals to be approximately equal

to N ( S 0 ≈ N). Thus, I max can be approximated as follow [29] : 

I max ≈ N 

[ 
1 − 1 

R 0 
( 1 + log(R 0 ) ) 

] 
. (7) 

- Final epidemic size , I total [29] : it is the total number of cases over the course of the epidemic wave. 

I = S 0 − S ∞ 

; S ∞ 

= lim t→∞ 

S(t) , (8) 
total 

3 
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Table 1 

Estimates with 95% confidence intervals of the initial parameters of the SIR-model; ν2 = 0 . 10 is constant for all countries. 

Country S 0 (x 10 5 ) [ 95% CI] I 0 [ 95% CI] R 0 [ 95% CI] β [ 95% CI] ν1 [ 95% CI] RMSE 2 

Benin 1.212 [1.211-1.214] 200 [197-203] 39 [37-40] 0.148 [0.145-0.151] 0.005 [0.004-0.006] 31.7 

Burkina-Faso 2.175 [2.145-2.206] 174 [164-183] 160 [149-172] 0.121 [0.121-0.122] 0.006 [0.005-0.007] 8.0 

Cape-Verde 0.517 [0.460-0.573] 21 [17-26] 97 [91-102] 0.226 [0.221-0.231] 0.095 [0.092-0.098] 98.8 

Côte d’Ivoire 2.643 [1.265-4.021] 73 [23-124] 8 [6-9] 0.178 [0.175-0.181] 0.014 [0.011-0.017] 65.6 

Gambia 0.24 [0.21-0.26] 8 [7-8] 0 [0-2] 0.259 [0.256-0.262] 0.125 [0.124-0.126] 15.2 

Ghana 3.291 [2.388-4.193] 46 [24-68] 81 [80-83] 0.20 [0.197-0.203] 0.044 [0.041-0.047] 462.0 

Guinea 3.789 [3.428-4.151] 229 [206-251] 85 [82-88] 0.146 [0.145-0.148] 0.004 [0.004-0.005] 35.7 

Guinea-Bissau 3.458 [3.452-3.497] 1990 [1970-2011] 4 [2-5] 0.146 [0.144-0.147] 0.001 [0.000-0.004] 15.2 

Liberia 0.507 [0.506-0.508] 100 [98-102] 87 [85-89] 0.146 [0.143-0.149] 0.010 [0.007-0.013] 153.4 

Mali 2.240 [2.215-2.265] 1175 [1139-1211] 199 [194-203] 0.167 [0.165-0.169] 0.002 [0.000-0.005] 39.1 

Mauritania 0.466 [0.291-0.641] 17 [8-26] 42 [41-44] 0.221 [0.216-0.225] 0.059 [0.055-0.063] 40.7 

Niger 2.652 [1.578-3.276] 1203 [1250-1296] 39 [47-54] 0.448 [0.441-0.455] 0.001 [0.000-0.001] 2.1 

Nigeria 20.886 [10.651-31.121] 252 [212-293] 110 [102-117] 0.173 [0.169-0.178] 0.004 [0.000-0.009] 2926.6 

Senegal 1.976 [0.723-3.230] 61 [16-138] 99 [98-101] 0.161 [0.160-0.163] 0.016 [0.014-0.019] 48.4 

Sierra-Leone 0.799 [0.797-0.801] 200 [191-209] 5 [3-6] 0.166 [0.160-0.171] 0.005 [0.000-0.012] 7.4 

Togo 0.830 [0.662-0.999] 42 [38-45] 28 [26-29] 0.144 [0.143-0.146] 0.024 [0.022-0.026] 8.0 

West Africa 48.667 [31.820-62.722] 5811 [5559-6194] 1112 [1043-1144] 0.152 [0.151-0.152] 0.009 [0.007-0.010] 1463.3 

S 0 , I 0 and R 0 : initial number of Susceptible, Infected and Removed individuals, respectively ( t = 0 ); ν1 : detection rate of infected individuals; β0 : 

Estimated transmission rate; RMSE 2 : Root Mean Square Error computed on the remaining observation (cross-validation). 

 

 

 

 

 

 

 

 

 

S ∞ 

can be approximated considering the entire population as initially susceptible ( S 0 ≈ N); hence, following [29] : 

log 

(
S ∞ 

N 

)
= R 0 

(
S ∞ 

N 

− 1 

)
. (9) 

For each country, the equation Eq. (9) was solved numerically to determine S ∞ 

through an iterative process. - Attack ratio , A r 

[23] : it is the fraction of susceptible population that becomes infected. It is calculated along the epidemic wave as follows:

A r (t) = 

S 0 + I 0 + R 0 − S(t) 

S 0 + I 0 + R 0 

= 

N − S(t) 

N 

. 

(10) 

For West Africa as a whole, S 0 , I 0 and R 0 were first computed by summing the corresponding estimated values of the 16

countries. Afterwards, the model (9) was fitted to daily reported cases of the region using initial conditions computed. This 

allowed the estimation of β and ν1 and the computation of the characteristics of COVID-19 dynamics across the region. 

Results 

Patterns of the first wave of COVID-19 transmission in West Africa 

Table A1 (Appendix A) presents demographic patterns and testing effort s in the West African region. It reveals great 

heterogeneity in the region in terms of population density and testing effort s. Countries such as Cape-Verde, Mauritania and 

Ghana have put relatively more effort into identifying infected individuals; while Niger, Nigeria and Guinea are countries 

with the lowest number of tests per one million people. 

Combining both the testing effort and the mean number of reported cases per test indicates a relatively less testing effort

to identify many infected individuals (Guinea and Gambia). On the other hand, countries like Cape-Verde, Benin and Togo 

had put relatively more effort into finding few COVID-19 cases ( Table A1 ). 

Results obtained from the estimation of initial conditions of the COVID-19 pandemic in West Africa revealed a relatively 

low proportion of susceptible individuals in most countries (about 1% of their total population). However, countries such as 

Guinea-Bissau and Cape-Verde showed a relatively large proportion of susceptible individuals to COVID-19 with 17 . 5% and 

2 . 4% of their total populations, respectively. The proportion of the susceptible individuals across West Africa was also rela-

tively low ( 1 . 2% ) ( Table A1 and Table 1 ). Moreover, before the detection of the first cases, infected individuals were present

in the population of all the countries with some already recovered individuals. The detection rate of infected individuals was 

relatively low (less than 1% ) for Benin, Burkina, Mali, Niger, Nigeria, Sierra-Leone and West Africa as a whole. However, some

countries such as Gambia (12.5 %), Cape-Verde ( 9 . 5% ), Mauritania ( 5 . 9% ) and Ghana ( 4 . 4% ) recorded the highest detection

rates ( Table 2 ). 

In most countries, the model estimated an average of one new case of infection caused by an infected individual during

the infectious period ( R 0 ) , except for Sierra-Leone, Nigeria, and Côte d’Ivoire with R 0 ≈ 2 and Niger, which recorded the

highest reproduction number ( R ≈ 4 ) ( Table 2 ). 
0 
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Table 2 

Epidemiological statistics with their 95% confidence intervals (CI) indicating the dynamics of COVID-19 in the whole west African and per country. 

Country R 0 [ 95% CI] T rp [ 95% CI] n rp [ 95% CI] T pp [ 95% CI] n pp [ 95% CI] I max [ 95% CI](x 10 4 ) I total [ 95% CI](x 10 4 ) 

Benin 1.41 [1.38-1.43] 114 [112-116] 29 [24-34] 104 [103-107] 634 [558-710] 0.57 [0.53-0.61] 6.3 [6.3-6.4] 

Burkina-Faso 1.15 [1.14-1.15] 239 [234-245] 12 [11-13] 229 [223-235] 218 [213-222] 0.19 [0.19-0.20] 5.4 [5.3-5.4] 

Cape-Verde 1.16 [1.14-1.18] 149 [148-150] 50 [46-53] 144 [143-145] 103 [89-117] 0.05 [0.04-0.06] 1.4 [1.2-1.5] 

Côte d’Ivoire 1.56 [1.54-1.58] 113 [112-114] 269 [263-274] 105 [104-106] 2368 [1038-3698] 1.97 [0.73-3.20] 16.4 [7.2-25.6] 

Gambia 1.15 [1.15-1.16] 138 [136-140] 28 [29-30] 134 [132-136] 52 [51-53] 0.02 [0.00-0.05] 0.56 [0.42-0.62] 

Ghana 1.39 [1.38-1.40] 131 [129-133] 632 [629-634] 124 [123-125] 2138 [1413-2863] 1.44 [0.76-2.13] 16.6 [10.9-22.3] 

Guinea 1.40 [1.39-1.41] 141 [139-143] 76 [66-95] 132 [130-134] 1861 [1659-2063] 1.71 [1.53-1.90] 19.3 [18.2-20.5] 

Guinea-Bissau 1.44 [1.43-1.46] 83 [82-84] 20 [19-20] 73 [72-74] 2084 [2040-2128] 1.85 [1.81-1.88] 18.7 [18.6-18.9] 

Liberia 1.33 [1.32-1.33] 120 [117-125] 17 [17-18] 111 [110-112] 196 [193-198] 0.17 [0.17-0.18] 2.3 [2.2-2.3] 

Mali 1.64 [1.63-1.66] 68 [64-72] 35 [34-37] 59 [55-63] 2254 [2189-2320] 2.00 [1.94-2.06] 1.48 [1.47-1.49] 

Mauritania 1.39 [1.36-1.42] 103 [101-104] 119 [116-123] 97 [95-99] 331 [243-420] 0.20 [0.05-2.18] 2.3 [2.1-2.5] 

Niger 4.45 [4.37-4.52] 20 [12-28] 86 [84-87] 15 [6-24] 19021 [18597-19444] 10.72 [10.49-10.96] 26.2 [20.0-27.9] 

Nigeria 1.67 [1.64-1.69] 121 [117-125] 774 [608-824] 112 [108-116] 21800 [6616-36983] 19.50 [11.89-27.11] 141.0 [126.7-249.8] 

Senegal 1.38 [1.37-1.39] 147 [146-152] 136 [133-138] 139 [138-140] 989 [55-2033] 0.82 [0.02-1.81] 9.7 [1.8-17.7] 

Sierra-Leone 1.58 [1.56-1.60] 83 [78-88] 31 [30-33] 75 [69-81] 700 [673-727] 0.62 [0.59-0.64] 5.0 [4.9-5.2] 

Togo 1.16 [1.16-1.17] 220 [218-222] 21 [15-27] 212 [210-214] 110 [100-121] 0.09 [0.08-0.09] 2.2 [2.0-2.4] 

West Africa 1.39 [1.38-1.41] 119 [117-121] 1891 [1874-1909] 111 [108-112] 25267 [24239-26294] 22.21 [21.21-23.22] 248.8 [140.8-250.7] 

R 0 : Basic reproduction number; T rp : Peak time of reported cases; n rp : Peak size of reported cases; T pp : time at which the largest daily number of new infectious cases in the population is obtained; n pp : largest 

daily number of new infectious cases in the population is obtained; I max : Maximum number of active cases; I total : Total number of cases over the course of the epidemic wave. 

5
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Fig. 1. Evolution trend of the COVID-19 daily cases per west African country for the first wave. 

 

 

 

 

 

 

 

 

 

 

 

 

Long-term dynamics of COVID-19 in West Africa 

We analyzed the long-term dynamics of COVID-19 in West Africa by first focusing on the true peak of the pandemic.

In general, the estimated reported peak time came a week (7-8 days) after the true peak time in all the countries, while

their estimated reported peak sizes accounted on average for 21% of the estimated true peak size ( Table 2 ). However, for

Cape Verde, Ghana and Mauritania, the estimated peak for the reported cases was much lower than the observed peak, 

thus revealing a great variability in the reported data with an alternation of days without reported cases and days with

a large number of cases. Most countries had already experienced the peak of the epidemic wave. The true peak time was

estimated in June for Sierra-Leone (14th), Mauritania (19th), Benin (27th), Côte d’Ivoire (24th) and Ghana (13th), while it 

was estimated in July for Liberia (4th) and Nigeria (5th), Senegal (18th), Guinea (23th), Cape-Verde (22th) and Gambia 

(28th). Niger recorded the earliest true peak time (April 8th), while the latest true peak time was on October 26th, 2020

for Burkina-Faso ( Fig. 1 and Table 2 ). The true peak time across the region was 1st July with 25,267 new cases ( Table 2

and Fig. 4 a-b). The margin error of the estimated true peak time varied from one day to 16 days, with an average value of

five days in the region. Half of the countries (8 out of 16) recorded a true peak size of less than 1,0 0 0 new cases at the

peak time. The highest numbers of new cases at the peak time were estimated at 19,021 and 17,703 for Niger and Nigeria,

respectively ( Table 2 and Fig. 1 ). The estimate of the peak size of reported cases was 1,891 daily new cases across the region

( Table 2 and Fig. 4 a-b). 

The final epidemic size accounted for 0 . 6% of the population of West Africa. This estimate was generally low ( < 1% of

the population size) for more than half of the countries, though Guinea-Bissau and Cape-Verde recorded the highest final 
6 
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Fig. 2. Running reproduction number per country in West Africa. 

 

 

 

 

 

 

 

 

 

epidemic sizes in terms of proportion to their population size ( > 9% ). The estimates of the maximum number of actual daily

active cases at the peak time for most countries were greater than 1,0 0 0 cases, though, it was 107,200 and 195,0 0 0 for Niger

and Nigeria, respectively ( Table 2 ). 

The running reproduction number helped to assess the evolution trends of the disease. It decreased over time in all the

countries from the beginning of the outbreak ( 1 . 2 − 4 . 5 ) to a stable point, which varied according to countries ( 0 . 50 − 0 . 82 ;

Fig. 2 ). As expected, the fraction of susceptible individuals being infected (attack ratio) increased over time from 0% to

40% − 70% , depending on countries. In addition, the maximum of attack ratio exceeded 50% in most of the countries. The

evolving trends in the reproduction number and attack ratio were similar to those noted for West Africa as a whole ( Fig. 4 b-

c). Moreover, Fig. 4 reveals that the peak with about 25,300 new cases occurred earlier in July 2020 with an attack ratio of

around 0.3. 

Discussion 

In epidemiology, understanding the dynamics of an epidemic outbreak and predicting its future course is a major re- 

search question, which is often studied using modelling techniques [30,31] . Estimation and prediction rely on mathematical 

and statistical models, which inform public health decision makers and ensure optimal use of resources to reduce the mor- 

bidity and mortality associated with epidemics [10,32–34] . For instance, estimation of epidemiological parameters and pre- 

diction on the Influenza outbreak dynamics in Canada was done using Richard’s model [32] , while a three-parameter logistic
7 
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Fig. 3. Evolution trends of the attack ratio per country in West Africa. 

 

 

 

 

 

 

 

 

growth model was used to study and forecast the final epidemic size in real-time of the Zika virus outbreaks in Brazil from

2015 to 2016 [30] . 

In this study, we used a deterministic SIR-type model to understand COVID-19 dynamics in the West African countries 

and estimated the overall number of susceptible individuals, which accounted for the 1 . 2% of the West African population

and 1% for most countries, except Guinea-Bissau and Cape Verde, where the susceptible individuals accounted for more 

than 2% . The concept of susceptibility in this study, considering the model (1) takes into account sensibility and exposure to

COVID-19. Thus, the low proportion of susceptible individuals in most countries could be explained by physiological factors, 

immunity acquired from other diseases or epidemics, or low levels of exposure to the disease (the majority of individuals are

far from the epicentre of the pandemic in different countries, with relatively low human movement between remote regions 

in West Africa as compared to the developed countries). Actually, individuals who are more susceptible or more exposed 

tend to be infected earlier, depleting the susceptible subpopulation of those who are at higher risk of infection [35] . This

selective depletion of susceptible individuals intensifies the deceleration in the incidence. Our findings also revealed a great 

disparity between countries in terms of the testing rates of COVID-19. Countries such as Guinea and Gambia and to a less

extent, Côte d’Ivoire and Nigeria, showed relatively less testing effort to identify many infected individuals. This suggests 

that there may not be enough tests being carried out to properly monitor the outbreak [25] . In contrast, countries such

as Cape-Verde, Benin and Togo, which have recorded less than or equal to 50 positive cases per 1,0 0 0 tests, seem to be

effectively controlling the pandemic according to the WHO criteria [36] . Compared to relatively wealthier countries such as 

Australia, South Korea and Uruguay, it takes hundreds of tests to find one case [25] . 
8 
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Fig. 4. Trends in COVID-19 dynamics across West Africa. (a) Prediction of the true peak and reported peak date, and size of COVID-19. (b). Evolution trends 

of the reproduction number. (c) Evolution trends of the attack ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The detection rate considered in model Eq. (1) is a better indicator of the testing effort since it represents the proportion

of active cases in the population that are identified daily. Our results revealed a relatively low detection rate of COVID-19 in

West Africa with less than 2% in most countries except Gambia, Cape-Verde and Mauritania ( > 5% ). The last two countries

are also the ones with the highest testing rates ( Table A1 ) confirming the link between detection rate and testing effort [37] .

The fact that Gambia had a relatively low testing effort and a high detection rate suggests that either an efficiency in the

contact tracing and testing efforts directed towards those really exposed, or poor quality of parameter estimation. Indeed, 

especially for Gambia, the peak size of the reported cases was underestimated by the model compared to the observed 

data. This may be explained by an unusually long period of very low detection of the disease in the country (March 18 -

July 13, 2020). Other factors that may explain significant differences between some estimates and observed data, including 

data quality are discussed elsewhere [21] . For example, data from Benin showed, from June 30, long periods (4-7 days)

without detected cases, often alternating with a large number of detected cases (more than 80) within a single day. This

may indicate a possible problem in the daily reporting of data or in the planning of PCR tests and has led to a significant

underestimation of the peak of reported cases ( Table 2 ). This was the case in Niger, where very low notification of COVID-

19 cases (detection rate of around 0 . 1% ; Table 1 ) led to a low number of observations and poor quality data, ultimately

resulting in a somewhat poor estimation of model parameters. 

The fairly low detection rates in most West African countries demonstrate low testing effort and may be explained by 

a number of factors, including the availability of testing kits and qualified healthcare workers as well as the low ability to

control the disease due to their low GDP. For instance, the average detection rate of COVID-19 in the world in April 2020

was estimated at 6% [38] . It is also useful to note that the estimated average detection rate hides a great variability in the

testing effort over time. Indeed, it is generally accepted that the testing rate is relatively low at the very beginning of an

epidemic outbreak, but can increase rapidly over time when better response mechanisms are put in place [39] . 

The dynamics of COVID-19 in West Africa show a reproduction number greater than one in all countries (from 1.2 in

Burkina-Faso to 4.4 in Niger), while it was 1.4 for the whole region. This value is relatively low compared to 1.6, estimated

for the same region in June in a recent study using a modified SEIR model [11] . Hence, this reveals either a declining

trend in the pandemic over time or the result of using a different modeling approach to estimate the reproduction number.

COVID-19 appears more serious than the Ebola outbreak in Africa given the reproduction number. Indeed, the reproduction 

number was estimated at 1.1, 1.2 and 1.2 for Guinea, Liberia and Sierra-Leone, respectively, against 1.4, 1.3 and 1.6 for the

same countries as far as COVID-19 is concerned [40] . These comparisons indicate that COVID-19 is on average 1.29 times

more reproducible than Ebola in these countries. 

The trend in the running reproduction number reveals a rapid decline in all the countries except Burkina-Faso and reveals 

some efficiency of the control measures put in place and being implemented in the different countries. Most countries had 

already experienced a peak in new COVID-19 cases in June and July 2020. In general, the reported peak was very low

compared with the true peak. Moreover, the true peak is relatively low compared with other regions in the world, probably

indicating either good preparedness and response to COVID-19 [41] , or resilience of Africans to COVID-19 [42] , which could

be attributed to acquired immunity from past epidemics or even weather conditions limiting the spread of the pandemic in 

Africa [43] . 

Outputs from this study are linked to Sustainable Development Goal 3 (Target 3.3 - End epidemics and other com- 

municable diseases) of the United Nations. Similar studies have shown that different approaches have been investigated 

to understand and predict the dynamics of the pandemic. Indeed, different models, for instance, the Bats-Hosts-Reservoir- 

People transmission network, model using numerical estimation methods such as VIM were applied to estimate parameters, 

especially for the unreported cases [44–46] . These investigations are in support of our study findings which show that es-

timates vary according to time. In addition, a hybrid modeling technique combining compartmental and growth models 

was also applied to the same data used in this study and yielded robust and more accurate estimations [47] . However,

predicting the course of the pandemic based on deterministic or growth models depends on the reliability of the data 

collected. 
9 
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Conclusion 

Our study shows that the novel COVID-19 pandemic, although highly contagious has not seriously impacted West Africa 

in terms of prevalence, compared to other parts of the world, particularly Europe and the USA. Actually, the total number

of susceptible individuals and final epidemic size account for 1 . 2% and 0 . 6% of the total population size of West Africa,

respectively. But, the relatively low reported cases are related to very low testing effort s in West African countries. The

study also indicates a relatively low detection rate, and for most countries in the region, the dates of the true peak of

infection have passed (June-July 2020). In addition, we found out that the minimum value of the basic reproduction number 

was observed in Burkina-Faso and in Gambia (1.15) while the maximum value was found in Niger (4.45). The maximum 

attack ratio exceeded 50% in most of the countries and the peak with about 25,300 new cases was predicted earlier in July

2020 with an attack ratio of around 0.3. Nevertheless, the pandemic is still ongoing in the region and it is important that

the non-pharmaceutical measures currently in place should continue over time to help reduce its spread dynamics, pending 

adequate effective treatment or vaccine. 
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Appendix A. Demographic patterns and testing effort s of the 16 West African countries 

Table A1 

Demographic patterns and testing effort s of the 16 West African countries. 

Countries Population size Density First case Tests/1M Pop Cases/10 0 0 tests 

Benin 12,123,200 108 03/16/2020 9,711 18 

Burkina-Faso 20,946,992 76 03/10/2020 - - 

Cape-verde 556,498 138 03/21/2020 137,485 50 

Côte d’Ivoire 26,428,999 83 03/12/2020 4,779 142 

Gambia 2,421,823 239 03/17/2020 5,502 222 

Ghana 31,072,945 137 03/12/2020 14,183 100 

Guinea 13,160,021 53 03/14/2020 1,860 382 

Guinea-Bissau 1,971,640 70 03/25/2020 - - 

Liberia 5,066,990 53 03/16/2020 - - 

Mali 20,294,900 17 03/26/2020 1,852 74 

Mauritania 4,659,052 5 03/15/2020 14,980 100 

Niger 24,269,389 19 03/22/2020 372 130 

Nigeria 206,522,290 226 02/28/2020 1,943 134 

Senegal 16,776,618 87 03/02/2020 8,632 93 

Sierra-Leone 7,989,949 111 04/01/2020 - - 

Togo 8,293,924 152 03/07/2020 7,784 22 

West Africa 402,555,230 66 02/28/2020 - - 

Date: 08/31/2020; Source: [26] and [25] ; Tests/1M Pop: number of tests per 1 million individuals; 

Cases/10 0 0 tests: number of positive cases per 10 0 0 tests; - : no data. 
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